AS Further Mathematics 8FM0
Specimen Paper - Further Mechanics 2 Mark Scheme

Question	Scheme	Marks	AO,
1(a)	From $A B: \begin{array}{llll} & 2 a & 4 a & 3.5 a\end{array}$	B1	1.2
	From $B C$: $a 000.5 a \quad a$	B1	1.2
	Mass ratios: $244 \begin{aligned} & \text { 2 }\end{aligned}$	B1	1.2
	$2 \times 0+4 \times 2 a+1 \times 4 a+1 \times 3.5 a=8 \bar{x}$	M1	2.1
	(i) $\bar{x}=\frac{31 a}{16}$	A1	1.1b
	$2 \times a+4 \times 0+1 \times 0.5 a+1 \times a=8 \bar{y}$	M1	2.1
	(ii) $\bar{y}=\frac{7 a}{16}$	A1	1.1b
		(7)	
(b)	Uniform $\Rightarrow \mathrm{cm}$ at mid-pt so used in 'distances' OR uniform \Rightarrow mass proportional to length so used in mass ratios	B1	2.4
		(1)	
(c)	Recognition that G will be vertically below A and use of $\tan \theta=\frac{\bar{x}}{2 a-\bar{y}}$ either way up	M1	2.1
	$\tan \theta=\frac{31}{25} \quad$ (may not be simplified)	A1ft	1.1b
(d)	$\theta=51^{\circ}$ or 0.89 rad or better	A1	1.1b
		(3)	
	Moments about mid-point of $B C$	M1	2.1
	$M g\left(2 a-\frac{31 a}{16}\right)=k M g(a+0.5 a)$ ft on their \bar{x}	A1ft	1.1b
		A1ft	1.1b
	$k=\frac{1}{24}$	A1	1.1b
		(4)	
(15 marks)			

Question 1 notes:

(a)

B1:Correct distances from $A B$ seen or implied
B1:Correct distances from $B C$ seen or implied
B1:Correct mass ratios seen or implied
(i)

M1: Correct no. of dimensionally correct terms
A1: At least 2 SF if decimal multiple
(ii)

M1: Correct no. of dimensionally correct terms
A1: At least 2 SF if decimal multiple
(b)

B1: Either use
(c)

M1: Accept either way up
A1 ft: Follow through on their answers from (a)
A1: cao
(d)

M1: All relevant dimensionally correct terms included, with no extras
A1 ft: Follow through on their answers from (a), allow one slip
A1 ft: Follow through on their answers from (a), all correct
A1: Correct answer for $k: \frac{1}{24}, 0.042$ or better

AS Further Mathematics 8FM0

Specimen Paper - Further Mechanics 2 Mark Scheme

Question	Scheme	Marks	AOs
2(a)	Resolving vertically	M1	3.4
	$R \cos \alpha=m g$	A1	1.1b
	Equation of motion	M1	3.4
	$R \sin \alpha=\frac{m v^{2}}{40}$	A1	1.1b
	Eliminate R and solve for v	M1	1.1.
	$v=17$ or $17.1\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	A1	1.1b
		(6)	
(b)	Resolving vertically	M1	3.4
	$R \cos \alpha=m g+F \sin \alpha$	A1	1.1b
		A1	1.1b
	Equation of motion	M1	3.4
	$R \sin \alpha+F \cos \alpha=\frac{m 39^{2}}{40}$	A1	1.1b
		A1	1.1b
	Recognition that max speed implies use of $F=\mu R$	B1	3.1b
	Eliminate R to form equation in μ only	M1	2.1
	Solve for μ	M1	1.1b
	$\mu=0.80$ or 0.801	A1	1.1b
		(10)	
(16 marks)			

Question 2 notes

(a)

M1: Correct number of terms with R resolved
A1: A correct equation
M1: Correct number of terms with R resolved
A1: A correct equation
M1: Must have two equations
A1: Answer depends on $g=9.8$ so only two possible answers
(b)

M1: Correct number of terms with R and F resolved
A1: A correct equation, condone 1 error
A1: A correct equation
M1: Correct number of terms with R and F resolved
A1: : A correct equation, condone 1 error
A1: A correct equation
B1: Must be used in an equation
M1: Must have two equations
M1: Must have two equations
A1: Answer depends on $g=9.8$ so only two possible answers

AS Further Mathematics 8FM0

Specimen Paper - Further Mechanics 2 Mark Scheme

Question	Scheme	Marks	AOs
3(a)	Use $\frac{\mathrm{d} v}{\mathrm{~d} t}$ and separate the variables	M1	3.4
	$\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{50}{v}-\frac{v}{8} \Rightarrow \int \mathrm{~d} t=\int \frac{8 v \mathrm{~d} v}{400-v^{2}}$	A1	1.1b
	Integrate both sides	M1	1.1b
	$t=-4 \ln \left(400-v^{2}\right)+C$	A1	1.1b
	Use initial conditions of the model to give $t=-4 \ln \left(400-v^{2}\right)+4 \ln 375$	M1	3.4
	Rearrange to make v^{2} the subject	M1	1.1b
	$v^{2}=400-375 \mathrm{e}^{-\frac{1}{4} t}$	A1	1.1b
		(7)	
(b)	(375) $\mathrm{e}^{-\frac{1}{4} t} \rightarrow 0$ as t increases, so $v^{2} \rightarrow 400$	M1	2.4
	Hence $v \rightarrow 20$	A1	2.1
		(2)	
(9 marks)			
Notes:			
(a) M1: Uses model to set up DE A1: A correct separated expression in v and t only M1: Clear attempt (must be a \ln) to integrate both sides A1: Correct indefinite integrals M1: Using $t=0, v=5$ to find a particular solution of the DE A1: Correct expression for v^{2}			
(b) M1: Clear explanation A1: Correct deduction			

